Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 11,
  • pp. 1242-1249
  • (2008)

An Optimization of Parameters for Application of a Laser-Induced Breakdown Spectroscopy Microprobe for the Analysis of Works of Art

Not Accessible

Your library or personal account may give you access

Abstract

Laser-induced breakdown spectroscopy (LIBS) provides many advantages for analysis of works of art. Both qualitative and semi-quantitative information about the elemental composition of an object can be rapidly obtained using LIBS. The time of response is on the order of a few seconds and no sample preparation is required. The possibility of performing analysis in museums and archeological sites makes LIBS particularly important; the combination of laser ablation and analysis as encountered in LIBS provides means to effectively carry out depth profiling of samples. By combining the use of a microscope, the dimension of the spot of the laser used to carry out analysis can be reduced and the spatial resolution highly improved; in this way, a very small area of the sample (on the order of 10 μm) can be analyzed. The aim of this work is to investigate the best working conditions in order to obtain the least amount of material removal during analysis, and, at the same time, the best quality in the spectral response for rapid and reliable identification of the elemental composition of an object. First, investigations were undertaken using metal alloys; second, the optimized LIBS conditions were used for analysis of models of painting layers prepared in the laboratory. Finally, a painting cross-section and a 19th century painted icon were analyzed using the micro-LIBS setup.

PDF Article
More Like This
Laser-induced breakdown spectroscopy in industrial and security applications

Alexander A. Bol'shakov, Jong H. Yoo, Chunyi Liu, John R. Plumer, and Richard E. Russo
Appl. Opt. 49(13) C132-C142 (2010)

Elemental analysis of cotton by laser-induced breakdown spectroscopy

Emily R. Schenk and Jose R. Almirall
Appl. Opt. 49(13) C153-C160 (2010)

Spectrochemical microanalysis of aluminum alloys by laser-induced breakdown spectroscopy: identification of precipitates

Igor V. Cravetchi, Mike Taschuk, Georg W. Rieger, Ying Y. Tsui, and Robert Fedosejevs
Appl. Opt. 42(30) 6138-6147 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.