Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 1,
  • pp. 66-72
  • (2008)

Detection of Hydrogen Peroxide Using Photofragmentation Laser-Induced Fluorescence

Not Accessible

Your library or personal account may give you access

Abstract

Photofragmentation laser-induced fluorescence (PF-LIF) is for the first time demonstrated to be a practical diagnostic tool for detection of hydrogen peroxide. Point measurements as well as two-dimensional (2D) measurements in free-flows, with nitrogen as bath gas, are reported. The present application of the PF-LIF technique involves one laser, emitting radiation of 266 nm wavelength, to dissociate hydrogen peroxide molecules into OH radicals, and another laser, emitting at 282.25 nm, to electronically excite OH, whose laser-induced fluorescence is detected. The measurement procedure is explained in detail and a suitable time separation between photolysis and excitation pulse is proposed to be on the order of a few hundred nanoseconds. With a separation time in that regime, recorded OH excitation scans were found to be thermal and the signal was close to maximum. The PF-LIF signal strength was shown to follow the same trend as the vapor pressure corresponding to the hydrogen peroxide liquid concentration. Thus, the PF-LIF signal appeared to increase linearly with hydrogen peroxide vapor-phase concentration. For 2D single shot measurements, a conservatively estimated value of the detection limit is 30 ppm. Experiments verified that for averaged point measurements the detection limit was well below 30 ppm.

PDF Article
More Like This
Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases

M. O. Rodgers, K. Asai, and D. D. Davis
Appl. Opt. 19(21) 3597-3605 (1980)

2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence

Dongdong Wu, Jagdish P. Singh, Fang Y. Yueh, and David L. Monts
Appl. Opt. 35(21) 3998-4003 (1996)

Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater

Gary M. Boudreaux, Tracy S. Miller, Amanda J. Kunefke, Jagdish P. Singh, Fang-Yu Yueh, and David L. Monts
Appl. Opt. 38(9) 1411-1417 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.