Abstract

Photothermal lens measurements and finite element modeling are used to examine the physical changes taking place in optical filter glasses. Colored glass and neutral density filters are found to have a strong positive temperature-dependent refractive index change. The overall positive refractive index change is thought to be a consequence of complex counteracting factors: stress-induced birefringence, polarizability, structural network, and temperature-dependent carrier density changes in the CdS<sub>x</sub>Se<sub>1–x</sub> microcrystals that produce optical properties of these glasses. Finite element analysis (FEA) modeling is used to examine the temperature profiles and the goodness of the semi-infinite thermal diffusion solution normally used for thermal lens experiments. The results of FEA were used to optimize experimental parameters and calculate values of d<i>n</i>/d<i>T</i> for the glass by comparison with standard liquid samples.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription