Near-infrared Raman spectroscopy has been used for species identification of pure microbial specimens for more than a decade. More recently, this optical method has been extended to the analysis of specimens containing multiple species. In this report, we demonstrate rapid, reagent-free quantitative analysis of a simplified model of oral plaque containing three oral bacteria species, <i>S. mutans</i>, <i>S. sanguis</i>, and <i>S. gordonii</i>, using near-infrared Raman spectroscopy. Raman spectra were acquired from bacterial mixtures in 200 seconds. A prediction model was calibrated by the partial least squares method and validated by additional samples. On a scale from 0 to 1, relative fractions of each species could be predicted with a root mean square error of 0.07. These results suggest that near-infrared Raman spectroscopy is potentially useful in quantification of microbial mixtures in general and oral plaques in particular.

PDF Article

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.