Multivariate curve resolution (MCR) is a powerful technique for extracting chemical information from measured spectra of complex mixtures. A modified MCR technique that utilized both measured and second-derivative spectra to account for observed sample-to-sample variability attributable to changes in soil reflectivity was used to estimate the spectrum of dibutyl phosphate (DBP) adsorbed on two different soil types. This algorithm was applied directly to measurements of reflection spectra of soils coated with analyte without resorting to soil preparations such as grinding or dilution in potassium bromide. The results provided interpretable spectra that can be used to guide strategies for detection and classification of organic analytes adsorbed on soil. Comparisons to the neat DBP liquid spectrum showed that the recovered analyte spectra from both soils showed spectral features from methyl, methylene, hydroxyl, and P=O functional groups, but most conspicuous was the absence of the strong PO–(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub> stretch absorption at 1033 cm<sup>−1</sup>. These results are consistent with those obtained previously using extended multiplicative scatter correction.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription