Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 60,
  • Issue 4,
  • pp. 437-440
  • (2006)

Partial Least Squares Regression Calibration for Determining Wax Content in Processed Flax Fiber by Near-Infrared Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

The quality of flax fiber in the textile industry is closely related to the wax content remaining on the fiber after the cleaning process. Extraction by organic solvents, which is currently used for determining wax content, is very time consuming and produces chemical waste. In this study, near-infrared (NIR) spectroscopy was used as a rapid analytical technique to develop models for wax content associated with flax fiber. Calibration samples (<i>n</i> = 11) were prepared by manually mixing dewaxed fiber and isolated wax to provide a range of wax content from 0 to 5%. A total of fourteen flax fiber samples obtained after a cleaning process were used for prediction. Principal component analysis demonstrated that one principal component is enough to separate the flax fibers by their wax content. The most highly correlated wavelengths were 2312, 2352, 1732, and 1766 nm, in order of significance. Partial least squares models were developed with various chemometric preprocessing approaches to obtain the best model performance. Two models, one using the entire region (1100–2498 nm) and the other using the selected wavelengths, were developed and the accuracies compared. For the model using the entire region, the correlation coefficient (<i>R</i><sup>2</sup>) between actual and predicted values was 0.996 and the standard error of prediction (RMSEP) was 0.289%. For the selected-wavelengths model, the <i>R</i><sup>2</sup> was 0.997 and RMSEP was 0.272%. The results suggested that NIR spectroscopy can be used to determine wax content in very clean flax fiber and that development of a low-cost device, using few wavelengths, should be possible.

PDF Article
More Like This
Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression

Z.Q. Hao, C.M. Li, M. Shen, X.Y. Yang, K.H. Li, L.B. Guo, X.Y. Li, Y.F. Lu, and X.Y. Zeng
Opt. Express 23(6) 7795-7801 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.