Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 60,
  • Issue 10,
  • pp. 1192-1197
  • (2006)

Prediction of Surface Roughness Using X-ray Photoelectron Spectroscopy and Neural Networks

Not Accessible

Your library or personal account may give you access

Abstract

A new model for controlling plasma processes was constructed by combining atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and neural networks. The applicability of XPS to modeling etch rate was also investigated, as well as the impact of dc bias inclusion. The back-propagation neural network was used to find complex relationships between XPS and AFM data. This technique was evaluated with the etching data characterized by a 2<sup>4</sup> full factorial experiment. Five prediction models of surface roughness were constructed and compared. The Type I model refers to the model constructed with conventional process parameters. The Type II and III models were built with XPS and XPS plus dc bias data, respectively. The remaining Type IV and V models refer to those constructed with principal component analysis (PCA) reduced-XPS and PCA reduced-XPS plus dc bias, respectively. Mode prediction performance was evaluated as a function of training factor. In predicting the surface roughness, the Type II model yielded an improved prediction of 39% with respect to the Type IV model. The improvement was also demonstrated in modeling the etch rate. These results indicate that utilizing full XPS data is more effective for improving the model prediction performance. The advantage of XPS data was more conspicuous in constructing the surface roughness model.

PDF Article
More Like This
Laser based soft-x-ray pulses for photoelectron spectroscopy of surfaces

G. Tsilimis, C. Benesch, J. Kutzner, and H. Zacharias
J. Opt. Soc. Am. B 20(1) 246-253 (2003)

Oxidation of aluminum thin films protected by ultrathin MgF2 layers measured using spectroscopic ellipsometry and X-ray photoelectron spectroscopy

Brian I. Johnson, Tahereh G. Avval, R. Steven Turley, Matthew R. Linford, and David D. Allred
OSA Continuum 4(3) 879-895 (2021)

Comparative study of the roughness of optical surfaces and thin films by use of x-ray scattering and atomic force microscopy

Victor E. Asadchikov, Angela Duparré, Stefan Jakobs, Albert Yu. Karabekov, Igor V. Kozhevnikov, and Yury S. Krivonosov
Appl. Opt. 38(4) 684-691 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.