Light scattering provides a problem in optical spectroscopy as the relationship between attenuation and absorption in the presence of scattering is nonlinear. Three simple methods of reducing the effects of scattering and hence returning to an approximately linear relationship are considered in this paper, namely, extracting light that has maintained its original polarization state through subtraction of orthogonal polarization states, use of an added absorber, and spatial filtering. These can all be applied relatively easily to conventional spectrophotometers. However, there is an inevitable trade-off between the accuracy of the measurement and the signal-to-noise ratio as scattered light is rejected from the detector. It is demonstrated that polarization subtraction is the most efficient technique at selecting weakly scattered photons from a scattered light background as it enables the relationship between attenuation and absorption coefficient to become more linear while maintaining a higher number of detected photons. In practical use, the drawback of polarization subtraction over added absorber and spatial filtering methods is that a large dc background light level is maintained, which contributes to a higher shot noise. This means that when the scattering coefficient is high (μs ≥ 7 mm<sup>-1</sup>) the added absorber method offers better performance for shot noise limited detection.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription