Abstract

Laser-induced breakdown spectroscopy (LIBS) measurements are typically carried out using pulses (<20 ns, >50 mJ) from a flashlamp-pumped electro-optically Q-switched Nd:YAG laser (EO-laser) or excimer laser. Here we report LIBS analyses of solids using an acousto-optically Q-switched Nd:YAG laser (AO-laser) producing 150 ns pulses of lower energy (10 mJ) at repetition rates up to 6 kHz. The high repetition rate allows increased spatial or depth sampling over a given time period compared to the EO-laser. Results of AO-laser based LIBS analysis of (1) steels, (2) soils, and (3) surface stains and dusts are described. Detection limits for Cr, Cu, Mn, Ni, and Si in steel ranged from 0.11 to 0.24% using a commercial polychromator-based detection system with limits 4–30 times lower achieved using a laboratory-based detection system. The minimum detectable masses of Ba, Cr, Mn, and Sr on a metal surface were estimated with 1.2 pg/shot achieved for Sr. Detection limits for Ba and Sr in soil were 296 and 52 ppm, respectively. The temperatures, spectra, and emission decay curves from plasmas generated by the AO- and EO-lasers are compared and some characteristics of particles ablated by the AO-laser are described.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription