Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 59,
  • Issue 8,
  • pp. 1002-1008
  • (2005)

Characterization of Infrared Chemical Sensors Modified with ZnO Nanowires for the Detection of Volatile Organic Compounds

Not Accessible

Your library or personal account may give you access

Abstract

In this paper we describe the application and characterization of zinc oxide (ZnO) nanowires in an infrared (IR) chemical sensing system for the detection of volatile organic compounds (VOCs). Under suitable conditions, we grew ZnO nanowires on the surfaces of IR internal reflection elements (IREs) and obtained successful results for the detection of VOCs. ZnO nanowires offer a large surface area to effectively adsorb the examined species; the sensitivity of these IR sensing systems was increased by 3- to 15-fold after surface treatment with the ZnO nanowires. To explore the performance of this type of sensor, we correlated the morphologies of the ZnO nanowires grown on the surfaces of the IREs with the adsorption behavior observed during the sensing of the VOCs. To characterize the properties of the ZnO nanowires during the detection of VOCs having a range of functionalities, we classified the VOCs and examined their enrichment factors by comparing the IR signals detected in the presence and absence of the ZnO nanowires. Our results indicate that the ZnO nanowires exhibited better performance for the detection of aromatic-type VOCs than they did for non-aromatic compounds. For quantitative analyses, we examined several compounds for their responses toward varying quantities of injected VOCs. Our results indicate that the IREs treated with ZnO nanowires display acceptable linearity in their standard curves; the linear regression coefficients were higher than 0.995 for a range of volatile compounds.

PDF Article
More Like This
PDMS-coated fiber volatile organic compounds sensors

Xiangping Ning, Jingyi Yang, Chun Liu Zhao, and Chi Chiu Chan
Appl. Opt. 55(13) 3543-3548 (2016)

Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds

Md. Rajibur Rahaman Khan, Byoung-Ho Kang, Sang-Won Lee, Su-Hwan Kim, Se-Hyuk Yeom, Seung-Ha Lee, and Shin-Won Kang
Opt. Express 21(17) 20119-20130 (2013)

Temperature-compensated optical fiber sensor for volatile organic compound gas detection based on cholesteric liquid crystal

Jianyang Hu, Yuzhou Chen, Zhenyu Ma, Li Zeng, Dong Zhou, Zenghui Peng, Weimin Sun, and Yongjun Liu
Opt. Lett. 46(14) 3324-3327 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.