Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 58,
  • Issue 9,
  • pp. 1116-1121
  • (2004)

Pulsed-Laser Crossed-Beam Thermal Lens Spectrometry for Detection in a Microchannel: Influence of the Size of the Excitation Beam Waist

Not Accessible

Your library or personal account may give you access

Abstract

Crossed-beam thermal lens spectrometry is especially designed for the detection of very small samples in capillary tubes and more generally in microfluidic devices. In this work, the effect of the size of the excitation beam with respect to the size of the sample microchannel has been investigated. Although the signal is inversely proportional to the size of the excitation waist into the sample, the use of large waists may provide greater sensitivities when short-pulse excitation lasers are used and allows easier optimization of the optical design. On the contrary, the use of small beam waists reduces the edge effects that can arise depending on the nature and thickness of the walls of the sample holder. Moreover, small beams provide better spatial resolution and have allowed the measurement of flow velocities as low as 1 mm s<sup>-1</sup>.

PDF Article
More Like This
Excitation temporal pulse shape and probe beam size effect on pulsed photothermal lens of single particle

Marta Andika, George Chung Kit Chen, and Srivathsan Vasudevan
J. Opt. Soc. Am. B 27(4) 796-805 (2010)

Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments

Mohammad Sabaeian, Hamidreza Rezaei, and Abdolmohammad Ghalambor-Dezfouli
Appl. Opt. 56(4) 999-1005 (2017)

Current-induced thermal-lens spectrometry

Pavel A. Gorkin, Mikhail A. Proskurnin, Boris K. Zuev, Andrei A. Zhirkov, and Vladimir V. Yagov
Opt. Lett. 34(5) 680-682 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.