Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 58,
  • Issue 8,
  • pp. 910-916
  • (2004)

Potential of Far-Ultraviolet Absorption Spectroscopy as a Highly Sensitive Quantitative and Qualitative Analysis Method for Aqueous Solutions, Part I: Determination of Hydrogen Chloride in Aqueous Solutions

Not Accessible

Your library or personal account may give you access

Abstract

This paper reports the usefulness of far-ultraviolet (FUV) absorption spectroscopy in highly sensitive quantitative and qualitative analysis of aqueous solutions. We propose a totally new idea for the utilization of FUV spectroscopy in pure water and aqueous solution analyses. We use an absorption band near 170 nm due to an <i>n</i> → σ* transition of water. The intensity of the foot of this band, which can be observed in the 190–210 nm region by use of an ordinary ultraviolet–visible (UV-Vis) spectrometer, is very sensitive to changes in hydration and hydrogen bonds of water. To demonstrate the potential of FUV spectroscopy in analytical chemistry, we undertook three kinds of experiments. The first one is concerned with the discrimination of eight kinds of commercial natural mineral water. The eight kinds of mineral water can be discriminated straightforwardly from the spectral patterns in the 190–250 nm region without any spectral pretreatment or spectral analysis such as multivariate analysis. The second experiment is the determination of hydrogen chloride (HCl) in aqueous solutions. FUV spectra of aqueous solutions of HCl over a concentration of 0–20 ppm were measured. A calibration model for predicting the concentration of HCl in the aqueous solutions was developed based on the absorbance at 193 nm. This method does not require any spectral pretreatment or multivariate analysis. The correlation coefficient and standard error of prediction of the calibration model developed are 0.9987 and 0.18 ppm, respectively. The detection limit of the proposal method for the determination of HCl in aqueous solutions was estimated to be 0.5 ppm (13.7 μM). The determination of HCl was also tried for natural mineral water to which HCl solutions with the concentrations of 2, 4, 6, 8, 12, 16, and 20 ppm were artificially added. The third study was the determination of ammonia (NH<sub>3</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in aqueous solutions containing both NH<sub>3</sub> and H<sub>2</sub>O<sub>2</sub>. It has been found that the present method is also useful for the determination of the two-component system.

PDF Article
More Like This
Temperature measurements of turbid aqueous solutions using near-infrared spectroscopy

Naoto Kakuta, Hidenobu Arimoto, Hideyuki Momoki, Fuguo Li, and Yukio Yamada
Appl. Opt. 47(13) 2227-2233 (2008)

Laser-induced fluorescence spectroscopy for phenol and intermediate products in aqueous solutions degraded by pulsed corona discharges above water

Daiyu Hayashi, Wilfred Hoeben, Geert Dooms, Eddie van Veldhuizen, Wijnand Rutgers, and Gerrit Kroesen
Appl. Opt. 40(6) 986-993 (2001)

Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy

X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng
Opt. Express 24(12) 13410-13417 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.