For evaluating exponential luminescence decays, there are a variety of computational rapid integral methods based on the areas of the decay under different binned intervals. Using both Monte Carlo methods and experimental photon counting data, we compare the standard rapid lifetime determination method (SRLD), optimized rapid lifetime determination methods (ORLD), maximum likelihood estimator method (MLE), and the phase plane method (PPM). The different techniques are compared with respect to precision, accuracy, sensitivity to binning range, and the effect of baseline interference. The MLE provides the best overall precision, but requires 10 bins and is sensitive to very small uncorrected baselines. The ORLD provides nearly as good precision using only two bins and is much more immune to uncompensated baselines. The PPM requires more bins than the MLE and has systematic errors, but is largely resistant to baseline issues. Therefore, depending on the data acquisition method and the number of bins that can be readily employed, the ORLD and MLE are the preferred methods for reasonable signal-to-noise ratios.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription