Abstract

A spectroscopic device for monitoring the temperature of aqueous solutions is presented. It uses a 950 nm light emission diode as light source and two photodiodes as detectors. Temperature is monitored following the thermally induced absorbance changes of the water-OH second overtone (~960 nm). A linear response between the light absorbed by an aqueous solution and its temperature is found in the range from 15 to 95 °C. A prediction error of 0.1 °C and a precision of 0.07 °C in temperature measurement can be achieved. Up to 0.1 M of electrolyte concentration can be present in the solution without significantly affecting the temperature measurement. Different strategies, such as remote (noninvasive) or in situ (using a fiber-optic probe) temperature measurement, are shown, and their relative advantages are discussed.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription