Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 58,
  • Issue 1,
  • pp. 105-110
  • (2004)

Determination of Phosphorous and Sulfur in Environmental Samples by Electrothermal Vaporization Inductively Coupled Plasma Atomic Emission Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

From the viewpoint of selective introduction of the analyte from its solvent and matrices, electrothermal vaporization (ETV) is useful for the sample introduction into the inductively coupled plasma (ICP). By using a tungsten boat furnace (TBF) vaporizer system, the loss of analyte phosphorus, which normally occurs during the drying and ashing stages, is suppressed. The phosphate ion is reacted with the tungsten supplied from the surface of the TBF to form stable tungsten phosphate species. Regarding the determination of sulfur, additional chemical modifiers such as copper(II), lead(II), etc., are necessary to retain the analyte on the TBF. The furnace-fusion (FF) method or wet-digestion technique on the TBF is applied to unify the chemical forms of the analytes. Various oxidative and reductive inorganic compounds as well as organic compounds of phosphorus and sulfur show the same sensitivities after the FF digestion with hydrogen peroxide. The detection limits are 1.5 ng and 0.12 ng for phosphorous and sulfur, respectively. The repeatabilities in terms of the relative standard deviations of 10 replicate measurements of phosphorus and sulfur are 4.2% and 2.0%, respectively. Finally, the established method is applied to the determination of several environmental waters.

PDF Article
More Like This
Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

Michaela Galiová, Jozef Kaiser, Francisco J. Fortes, Karel Novotný, Radomír Malina, Lubomír Prokeš, Aleš Hrdlička, Tomáš Vaculovič, Miriam Nývltová Fišáková, Jiří Svoboda, Viktor Kanický, and Javier J. Laserna
Appl. Opt. 49(13) C191-C199 (2010)

Quantitative analysis of Fuller’s earth using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

I. Rehan, M. Z. Khan, K. Rehan, S. Sultana, M. U. Rehman, R. Muhammad, M. Ikram, and H. Anwar
Appl. Opt. 58(16) 4227-4233 (2019)

Determination of Phosphorus and Sulfur in Fuel Rich Air–Hydrogen Flames

Augusta Syty and John A. Dean
Appl. Opt. 7(7) 1331-1336 (1968)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.