Infrared (IR, 3-12-μm) microscopic spectral imaging is an important analytical technique. Many current instruments employ thermal IR light sources, which suffer the problem of low brightness and high noise. This paper evaluates the system engineering merit in using semiconductor lasers, which offer orders-of-magnitude-higher power, brightness, and lower noise. A microscopic spectral imaging system using semiconductor lasers (quantum cascade) as illuminators, and focal plane array detectors demonstrated a high signal-to-noise ratio (>20 dB) at video frame rate for a large illuminated area. The comparative advantages of laser vs. thermal light source are analyzed and demonstrated. Microscopic spectral imaging with fixed-wavelength and tunable lasers of 4.6-, 5.1-, 6-, and 9.3-μm wavelength was applied to a number of representative samples that consist of biological tissues (plant and animal), solid material (a stack of laminated polymers), and liquid chemical (benzene). Transmission spectral images with ~30-dB dynamic range were obtained with clear evidence of spectral features for different samples. The potential of more advanced systems with a wide coverage of spectral bands is discussed.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription