Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 57,
  • Issue 6,
  • pp. 675-681
  • (2003)

Near-Infrared Spectroscopic Monitoring of the Diffusion Process of Deuterium-Labeled Molecules in Wood. Part II: Hardwood

Not Accessible

Your library or personal account may give you access

Abstract

Fourier transform near-infrared (FT-NIR) transmission spectroscopy was applied to monitor the diffusion process of deuteriumlabeled molecules in hardwood (Beech). The results are compared with previous data obtained on softwood (Sitka spruce) in order to consistently understand the state of order in cellulose of wood. The saturation accessibility and diffusion rate varied characteristically with the OH groups in different states of order in the wood substance, the diffusants, and the wood species, respectively. The variation of saturation accessibility should be associated with the fundamental difference of the fine structure such as the microfibrils in the wood substance. The effect of the anatomical cellular structure on the accessibility was reflected in the variation of the diffusion rate with the wood species. The size effect of the diffusants also played an important role for the diffusion process in wood. Since the volumetric percentage of wood fibers and wood rays is relatively similar, the dichroic effects due to the anisotropy of the cellulose chains were apparently diminished. Finally, we proposed a new interpretation of the fine structure of the microfibrils in the cell wall by comparing a series of results from hardwood and softwood. Each elementary fibril in the hardwood has a more homogeneous arrangement in the microfibrils compared to that in the softwood.

PDF Article
More Like This
Spectroscopic studies of wood-drying processes

Mats Andersson, Linda Persson, Mikael Sjöholm, and Sune Svanberg
Opt. Express 14(8) 3641-3653 (2006)

Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy

Ryunosuke Kitamura, Tetsuya Inagaki, and Satoru Tsuchikawa
Opt. Express 24(4) 3999-4009 (2016)

Optical properties of drying wood studied by time-resolved near-infrared spectroscopy

Keiji Konagaya, Tetsuya Inagaki, Ryunosuke Kitamura, and Satoru Tsuchikawa
Opt. Express 24(9) 9561-9573 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved