In this article, mid-infrared Fourier transform (Mid-FT-IR) and carbon thirteen nuclear magnetic resonance (<sup>13</sup>C NMR) spectroscopy have been used to determine possible interactions between sucrose and various alkali or alkaline earth metals in aqueous solution. In the presence of these metals, significant shifts in the absorption bands of sucrose were noted by mid-FT-IR coupled with principal component analysis (PCA). These shifts were explained on the basis of weakening of the H-bond network between sucrose and water and possible interactions between sucrose and the metal ion. Factorial maps were established and the spectral patterns obtained show that these interactions vary according to the nature of the metal ion. <sup>13</sup>C NMR analysis showed that the carbon atoms of sucrose undergo shielding or deshielding in the presence of metal ions in aqueous solutions. Two factors were invoked to account for the variation of chemical shifts: the rupture of hydrogen bonds due to hydration of the metal ion and the possible coordination of the metal ion to the oxygen atoms of sucrose.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription