The diffusion of additives in thick (~500μm) single layer and multilayer films has been characterized using FT-IR microspectroscopy. The objective of this research was to investigate additive migration and concentration profiles in coextruded multilayer films of industrially relevant thicknesses. In particular, the investigation focused on the migration of an erucamide slip agent in 50-μm-thick coextruded bilayer films of linear low-density polyethylene (LLDPE) and a polyolefin plastomer (POP). Erucamide concentration profiles were successfully mapped using synchrotron-based FT-IR microspectroscopy. The synchrotron radiation helped to achieve a higher spatial resolution for the thin films. Meticulous sample preparation was needed to map the thin film samples. Results with FT-IR microspectroscopy showed that the additive-concentration profiles were relatively uniform across the multilayer-film thickness irrespective of the intended initial additive distribution. For example, a bilayer planned for 1 wt % erucamide in an LLDPE layer and no erucamide in a POP layer showed significant additive migration into the POP layer at the extrusion rates used. FT-IR microspectroscopy results also showed that more erucamide migrated to the surface of a POP layer than an LLDPE layer. Attenuated total reflectance (ATR) FT-IR spectroscopy was used to confirm the time-dependent increase of erucamide surface concentration and that the increase was more pronounced at the surface of the POP layers.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription