Abstract

Deterministic offsets have remained one of optical activity's most intractable problems. To the extent that the mechanisms by which they are produced do not depend on the chiroptical properties of the sample, they can be eliminated by the subtraction of measurements done on both enantiomers. We show that it is possible to create, by purely optical means, by the sole use of half-wave retarders, the optical antipode of a chiral molecule, to measure the chiroptical properties of the molecule and of its optically generated antipode, and to recover, by subtracting the measurements, the offset-free data of the enantiomer which is physically present. We moreover show that it is possible to do the measurements in a way that eliminates offsets that might occur through the influence of the differing chiroptical properties of the two antipodes. The procedure can be repeated, and by doing so, an almost arbitrarily high precision can be reached. The method is demonstrated by offset-free Raman optical activity back-scattering spectra measured in the so-called scattered circular polarization mode, one of optical activity's so far largely unsolved measurement problems. Such measurements can now be done with 2 mg of substance, in throw-away capillary cells, and on compounds sealed in cylindrical vials.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription