Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 56,
  • Issue 6,
  • pp. 751-755
  • (2002)

Stopped-Flow FT-IR Spectroscopy of Aqueous Solutions Using Attenuated Total Reflectance

Not Accessible

Your library or personal account may give you access

Abstract

An apparatus for the study of solution phase kinetics using FT-IR spectroscopy has been developed. The observation chamber consists of an integrated tangential mixer-flow cell and a ZnSe element permitting attenuated total reflectance (ATR) measurements. The short optical pathlength afforded by ATR allows mid-IR observation of chemical reactions in aqueous solution, including the spectral region near the water bending vibration (1640 cm<sup>-1</sup>). High hydraulic backpressures required to force solution rapidly through a thin layer flow cell are not necessary with the ATR flow cell because the optical pathlength and the flow cross-section have been decoupled, allowing for a relativity large flow chamber when compared with instruments incorporating a transmission flow cell. Overall system performance has been evaluated using the hydrolysis of methylchloroacetate as a test reaction. The feasibility of observing reactions with initial half-lives of approximately 250 ms is demonstrated. The system is very robust, with little risk of damaging the optics during routine maintenance.

PDF Article
More Like This
Attenuated total reflectance spectroscopy with chirped-pulse upconversion

Hideto Shirai, Constance Duchesne, Yuji Furutani, and Takao Fuji
Opt. Express 22(24) 29611-29616 (2014)

Enhanced photoluminescence spectroscopy for thin films using the attenuated total reflection method

Takashi Wakamatsu, Tadaaki Kitami, Tomoaki Maruyama, and Susumu Toyoshima
Appl. Opt. 50(5) 696-700 (2011)

Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.