Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 56,
  • Issue 1,
  • pp. 99-106
  • (2002)

Determination of Chlorinity in Aqueous Fluids Using Raman Spectroscopy of the Stretching Band of Water at Room Temperature: Application to Fluid Inclusions

Not Accessible

Your library or personal account may give you access

Abstract

A new analytical method, based on the Raman spectroscopy of the ν(OH) stretching vibration of water, has been developed for the determination of the concentration of chloride in aqueous solutions with the goal of reconstructing the bulk ion content of fluid inclusions that are relics of paleo-fluid circulation in rocks. The method involves calibrating the area of one band of the spectrum difference between pure water and solutions of appropriate composition with respect to the chloride concentration. Calibration curves were constructed for the major geological chemical salts LiCl, NaCl, KCl, CaCl<sub>2</sub>, and MgCl<sub>2</sub>, and NaCl-CaCl<sub>2</sub> systems. The application to fluid inclusions has been confirmed using synthetic fluid inclusions. For cubic minerals such as fluorite, the calibration curve for the NaCl system correctly estimates the chlorinity. For birefringent minerals, such as quartz, the Raman spectrum of the aqueous solution depends on the orientation of the host crystal. The crystal must be oriented in such a way that one axis of the ellipse of the indicatrix projects parallel to the spectrometer slit. This method complements micro-thermometric data and allows the determination of chlorinity when ice-melting temperature cannot be used.

PDF Article
More Like This
Laser-induced breakdown spectroscopy for rapid accurate analysis of Mg, Ca, and K in edible sea salts

Hyang Kim, Van Tho Ngo, Sandeep Kumar, Won Bae Lee, Jeong Park, Song-Hee Han, Sang-Ho Nam, Kyung-Sik Ham, and Yonghoon Lee
Appl. Opt. 58(36) 9940-9948 (2019)

Anion–water hydrogen bond vibration revealed by the terahertz Kerr effect

Hang Zhao, Yong Tan, Rui Zhang, Yuejin Zhao, Cunlin Zhang, and Liangliang Zhang
Opt. Lett. 46(2) 230-233 (2021)

Combined LIBS and Raman spectroscopy: an approach for salinity detection in the field of seawater investigation

Yansheng Fan, Yuanyuan Xue, Yiping Wang, Runze Liu, and Shilei Zhong
Appl. Opt. 61(7) 1718-1725 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.