Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 55,
  • Issue 10,
  • pp. 1297-1303
  • (2001)

Effect of Pulse Delay Time on a Pre-ablation Dual-Pulse LIBS Plasma

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we investigate the effect of dual-pulse timing on material ablation, plasma temperature, and plasma size for pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Although the plasma temperature increases for dual-pulse excitation, the signal enhancement is most easily attributed to increased sample ablation. Plasma images show that the magnitude of the enhancement can be affected by the collection optic and by the collection geometry. Enhancements calculated using the total integrated intensity of the plasma are comparable to those measured using fiber-optic collection.

PDF Article
More Like This
Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses

Jon Scaffidi, Jack Pender, William Pearman, Scott R. Goode, Bill W. Colston, J. Chance Carter, and S. Michael Angel
Appl. Opt. 42(30) 6099-6106 (2003)

Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy

Jon Scaffidi, William Pearman, Marion Lawrence, J. Chance Carter, Bill W. Colston, and S. Michael Angel
Appl. Opt. 43(27) 5243-5250 (2004)

Optical emission enhancement using laser ablation combined with fast pulse discharge

Weidong Zhou, Kexue Li, Qinmei Shen, Qiaoling Chen, and Jingming Long
Opt. Express 18(3) 2573-2578 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved