Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 54,
  • Issue 7,
  • pp. 956-962
  • (2000)

Pressure-Dependent Changes in the Infrared C-H Vibrations of Monolayer Films at the Air/Water Interface Revealed by Two-Dimensional Infrared Correlation Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Two-dimensional infrared correlation analysis (2D-IR) was applied to a set of surface pressure-dependent unpolarized IR spectra of a monolayer film of 1,2-dipalmitoyl-<i>sn</i>-glycero-3-phosphocholine (DPPC) at the air/water (A/W) interface. The experimentally measured asynchronous 2D-IR spectra were compared with synthetic spectra calculated by using an 'overlapped peaks' model vs. a 'frequency shifting' model. The results presented here show that when the experimentally observed monolayer IR spectra are acquired as a function of surface pressure, one model cannot be used exclusively for spectral interpretation. In this study, the monolayer IR spectra were divided into a low-pressure region subset (< 11 mN/m) and a high-pressure region subset (> 11 mN/m). When the monolayer IR spectra acquired as a function of surface pressure are analyzed by 2D correlation methods, the results strongly support the following conclusions: (1) the low-pressure subset, which encompasses both the liquid expanded (LE) and the liquid expanded/liquid condensed (LE/LC) regions of the DPPC monolayer isotherm, is best modeled by two overlapped peaks correlated with ordered and disordered conformational states of the monolayer film; and (2) the high-pressure subset, which reflects solely the liquid condensed (LC) phase of the monolayer isotherm, is best modeled by a single peak, which undergoes a minor frequency shift, and which may be primarily correlated with gradual packing of the liquid condensed structure. This interpretation of the 2D-IR correlation spectra is in agreement with the interpretation of sub-bands seen in polarized monolayer IR spectra previously reported by our laboratory.

PDF Article
More Like This
Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Visualization and measurement of the local absorption coefficients of single bilayer phospholipid membranes using scanning near-field optical microscopy

Arif M. Siddiquee, Imad Younus Hasan, Shibiao Wei, Daniel Langley, Eugeniu Balaur, Chen Liu, Jiao Lin, Brian Abbey, Adam Mechler, and Shanshan Kou
Biomed. Opt. Express 10(12) 6569-6579 (2019)

Hydrated-electron resonance enhancement O–H stretching vibration of water hexamer at air–water interface

Zhiwei Men, Wenhui Fang, Zuowei Li, Chenglin Sun, Zhanlong Li, and Xiaojun Wang
Opt. Lett. 40(7) 1434-1437 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.