Abstract

A new graphically oriented local modeling procedure called interval partial least-squares (i PLS) is presented for use on spectral data. The i PLS method is compared to full-spectrum partial least-squares and the variable selection methods principal variables (PV), forward stepwise selection (FSS), and recursively weighted regression (RWR). The methods are tested on a near-infrared (NIR) spectral data set recorded on 60 beer samples correlated to original extract concentration. The error of the full-spectrum correlation model between NIR and original extract concentration was reduced by a factor of 4 with the use of i PLS (r=0.998, and root mean square error of prediction equal to 0.17% plato), and the graphic output contributed to the interpretation of the chemical system under observation. The other methods tested gave a comparable reduction in the prediction error but suffered from the interpretation advantage of the graphic interface. The intervals chosen by i PLS cover both the variables found by FSS and all possible combinations as well as the variables found by PV and RWR, and i PLS is still able to utilize the first-order advantage. Index Headings: Interval PLS; Variable selection; NIR, Principal variables; Forward stepwise selection; Recursively weighted regression; Beer; Extract.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription