In this paper we report the application of Fourier transform infrared (FT-IR) microspectroscopy to monitor the molecular dynamics of lymphocyte activation. Infrared spectra of lymphocytes stimulated with the mitogen phytohaemagglutinin-L show spectral features 15 min after initial stimulation that are not apparent in resting lymphocytes. By analyzing the second-order derivatives of the raw spectra and applying principal components analysis (PCA), we conclude that the major spectral changes observed in the first hour result from an increase in overall RNA synthesis. Bands characteristic of RNA at 1244, 1080, 1050, 970, 1160, and 1120cm -1 appear progressively more intense over time in the spectra of activated lymphocytes. The magnitude of these changes increases over time as the cell differentiates into a blast cell. The sensitivity of infrared spectroscopy to RNA moieties and the rapidity of the technique suggest a possible future role for FT-IR spectroscopy in histocompatibility testing. Index Headings: Fourier transform infrared spectroscopy; Lymphocyte activation; Phytohaemagglutinin; RNA synthesis; Second-order derivative analysis; Principal components analysis.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription