The effect of model updating on the identification of a pharmaceutical excipient based on its near-infrared (NIR) spectra has been investigated. A pragmatic updating approach, consisting of adding stepwise newly available samples to the training set and rebuilding the classification model, was applied. Its performance is compared for three pattern recognition methods: the wavelength distance method, the Mahalanobis distance method, and the SIMCA (soft independent modeling of class analogy) residual variance method. For the wavelength distance method, the updating approach is straightforward. In the case of the multivariate classification methods, which are based on a certain number of significant principal components (PCs), the selection of the number of PCs included in the model must be performed with care, as this number has a major impact on the classification results.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription