Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 53,
  • Issue 12,
  • pp. 1628-1637
  • (1999)

Optical Emission Analysis of 15N: Pressure Effects and Identification of NO and Gaydon-Herman N2 Bands in the Discharge

Not Accessible

Your library or personal account may give you access

Abstract

The optical emission method, an alternative to mass spectrometry for <sup>15</sup>N analysis, is based on measuring ratios of the intensities of the 14N<sub>2</sub>(28), <sup>14</sup>N <sup>15</sup>N (29), and <sup>15</sup>N<sub>2</sub> (30) lines of the 2 band of the C(<sup>3</sup>Pi<sub>u</sub>) B(<sup>3</sup>Pi<sub>g</sub>) N transition near 298 nm. However, properties of the discharge are not well understood, and interferences that affect the analysis have never been explicitly identified. An efficient low-energy radio-frequency source and home-built spectrometer were used to obtain spectra over a wide range and with multiple scans. Weak extraneous bands were identified as the overlapping beta and gamma series of NO, not CO or OH as previously thought. Bands identified as the third positive system of CO were only observed under conditions far removed from normal practice. As tube pressure was increased from 0.3 to 1.8 kPa, the N<sub>2</sub> intensity decreased relative to that of NO peaks. The 29/28 intensity ratio also varied with pressure, although not in a completely consistent way. A weak band underlying the <sup>14</sup>N<sup>15</sup>N transition was identified as part of the Gaydon-Herman singlet series of N<sub>2</sub>; this interference rather than peaks from other species, may be the single factor most limiting analytical performance. Implications for the analytical method are discussed.

PDF Article
More Like This
High-Temperature Spectral Emissivities and Total Intensities of the 15-μ Band System of CO2*

C. B. Ludwig, C. C. Ferriso, and L. Acton
J. Opt. Soc. Am. 56(12) 1685-1692 (1966)

Discharge Emission Identification by Photoelectron Spectroscopy

J. C. Steichen and J. L. Franklin
Appl. Opt. 12(8) 1971-1975 (1973)

New Vacuum-Ultraviolet Emission Continua of Helium Produced in High-Pressure Discharges

R. E. Huffman, Y. Tanaka, and J. C. Larrabee
J. Opt. Soc. Am. 52(8) 851-857 (1962)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.