The experimental conditions and procedure for quantitative analysis of steel by laser-induced breakdown spectroscopy in argon at atmospheric pressure using an infrared Nd:YAG laser have been studied. Satisfactory analytical results have been obtained for the determination of C, Si, Cr, and Ni contents in low-alloyed steels. The lens-to-sample distance is shown to be a relevant parameter, which can be selected at each pulse energy to enhance the line intensities and the repeatability of measurements. A higher precision has been obtained for line-intensity ratios (0.9-2.5% relative standard deviation for concentrations higher than 0.1%) than for absolute intensity measurements. The calibration curves for all the elements have correlation coefficients above 0.999. Detection limits are in the range 6-80 ppm.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription