The feasibility of applying molecular spectroscopy in the mid-infrared region to the quantitation of glucose and cholesterol in whole blood and in blood serum was examined by measuring the samples in the dry state on a polyethylene carrier. The partial least-squares (PLS) algorithm was employed to set up the calibration models. Analysis was performed by normalizing the spectra to a standard area. Evidence that this approach is warranted was obtained through experiments where potassium thiocyanate served as the internal standard. The following average PRESS values (PRESS stands for prediction residual error sum of squares) emerged from the calibration: glucose, 22.3 mg/dL; cholesterol, 31.3 mg/dL. Such errors are comparable with those achieved in attenuated total reflectance (ATR) measurements. The calibration models set up for blood serum samples fit better than those for whole blood samples. If the procedure of sample application onto the carrier is improved, the method may work well for the determination of glucose and cholesterol in whole blood and in blood serum.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription