Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 51,
  • Issue 3,
  • pp. 350-357
  • (1997)

Comparison of Multivariate Calibration and Discriminant Analysis in Evaluating NIR Spectroscopy for Determination of Meat Tenderness

Not Accessible

Your library or personal account may give you access

Abstract

Often the primary goal of analytical measurement tasks is not to find good estimates of continuous reference values but rather to determine whether a sample belongs to one of a number of categories or subgroups. In this paper the potential of different statistical techniques in the classification of raw beef samples in tenderness subgroups was studied. The reference values were based on sensory analysis of beef tenderness of 90 samples from bovine <i>M . longissimus dorsi</i> muscles. The sample set was divided into three categories-very tough, intermediate, and very tender-according to degree of tenderness. A training set of samples was used to find the relationship between category and near-infrared (NIR) spectroscopic measurements. The study indicates that classical discriminant analysis has advantages in comparison to multivariate calibration methods [i.e., principal component regression (PCR)], in this application. One reason for this observation seems to be that PCR underestimates high measurement values and overestimates low values. In this way most samples are assigned to the intermediate group of samples, causing a small number of erroneous classifications for the intermediate subgroup, but a large number of errors for the two extreme groups. With the use of PCR the number of correct classifications in the extreme subgroups was as low as 23%, while the use of discriminate analysis increased this number to almost 60%. The number of classifications in correct or neighbor subgroup for the two extreme subgroups was equal to 97%. A 'bias-correction' was also attempted for PCR, and this gave results comparable to the best results obtained by discriminant analysis methods. Test sets used NIR analysis of fresh, raw beef samples with different processing. While this spectroscopic approach had previously been shown to be useful with frozen products, it appears unsuitable at this time for fresh beef. However, its marginal analytical utility proved useful in evaluating the two classification approaches employed in this study.

PDF Article
More Like This
Evaluation of univariate and multivariate calibration strategies for the direct determination of total carbon in soils by laser-induced breakdown spectroscopy: tutorial

Wesley Nascimento Guedes, Diego Victor Babos, Vinícius Câmara Costa, Carla Pereira De Morais, Vitor da Silveira Freitas, Kleydson Stenio, Alfredo Augusto Pereira Xavier, Luís Carlos Leva Borduchi, Paulino Ribeiro Villas-Boas, and Débora Marcondes Bastos Pereira Milori
J. Opt. Soc. Am. B 40(5) 1319-1330 (2023)

Sensitive and specific discrimination of pathogenic and nonpathogenic Escherichia coli using Raman spectroscopy—a comparison of two multivariate analysis techniques

Khozima Hamasha, Qassem I. Mohaidat, Russell A. Putnam, Ryan C. Woodman, Sunil Palchaudhuri, and Steven J. Rehse
Biomed. Opt. Express 4(4) 481-489 (2013)

Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument

Ann M. Ollila, Jeremie Lasue, Horton E. Newsom, Rosalie A. Multari, Roger C. Wiens, and Samuel M. Clegg
Appl. Opt. 51(7) B130-B142 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.