Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 51,
  • Issue 3,
  • pp. 323-331
  • (1997)

Approach to Determine Electrochemical Interface Structure from Surface Optical Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

We present a general approach for establishing correlations between the optical second-harmonic (SH) response generated from a metal/electrolyte interface and the interface structure. Our approach entails the construction of a response function for optical second-harmonic generation (SHG) from the metal surface in the presence of an electrolyte and an applied electrochemical field. The response function approach, a powerful and general method, is developed here for the first time for SHG data. Here, the response function describes the nonlinear optical response of a mesoscopic region of the surface to an applied static mesoscopic electric field and is a characterization of how the electrostatic nature of the surface responds to changes in the concentration and composition of the electrolyte. We construct the response function from experimental measurements of the SH response and from models representing known interface structure. A significant aspect of our approach is that it combines, through the modification of the response function, existing models of metal-interface structure with models for mechanisms of SHG response. Our approach provides, therefore, a framework for correlating existing and emerging models of the double layer with optical experimental measurements. Case study analyses of prototype interface systems are presented here, demonstrating applications of our approach.

PDF Article
More Like This
Experiments on optical second-harmonic generation as a surface probe of electrodes

G. L. Richmond, H. M. Rojhantalab, J. M. Robinson, and V. L. Shannon
J. Opt. Soc. Am. B 4(2) 228-236 (1987)

Second harmonic generation for in situ analysis of electrode surface structure

Victoria L. Shannon, Daniel A. Koos, and Geraldine L. Richmond
Appl. Opt. 26(17) 3579-3583 (1987)

Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach

Jérémy Butet, Benjamin Gallinet, Krishnan Thyagarajan, and Olivier J. F. Martin
J. Opt. Soc. Am. B 30(11) 2970-2979 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.