Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 51,
  • Issue 2,
  • pp. 240-246
  • (1997)

Effect of Data Preprocessing Methods in Near-Infrared Diffuse Reflectance Spectroscopy for the Determination of the Active Compound in a Pharmaceutical Preparation

Not Accessible

Your library or personal account may give you access

Abstract

Near-infrared diffuse reflectance spectroscopy (NIRS) with a fiberoptic probe was used for the determination of the active compound in a commercial pharmaceutical preparation. In order to reduce the strong scatter in the spectra and prevent scatter-induced changes in measurements from prevailing over concentration-induced changes, several data preprocessing methods were tested: normalization, derivatives, multiplicative scatter correction, standard normal variate, and detrending. The effectiveness for reducing the scattering of each data preprocessing was assessed, and the best results were obtained with the use of the second derivative. The effect of the treatments on the quantitation of the active compound by partial least-squares regression (PLSR) was studied, similar results being obtained in all cases, with a relative standard error of prediction lower than 1.55%.

PDF Article
More Like This
Nondestructive determination of SSC in an apple by using a portable near-infrared spectroscopy system

Yizhe Zhang, Jipeng Huang, Qiulei Zhang, Jinwei Liu, Yanli Meng, and Yan Yu
Appl. Opt. 61(12) 3419-3428 (2022)

Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

Yongni Shao, Yong He, and Jingyuan Mao
Appl. Opt. 46(25) 6391-6396 (2007)

Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Lili Xu, Jinming Liu, Chunqi Wang, Zhijiang Li, and Dongjie Zhang
Appl. Opt. 62(11) 2756-2765 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.