Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 9,
  • pp. 1196-1202
  • (1996)

Binding Properties of Near-IR Dyes to Proteins and Separation of the Dye/Protein Complexes Using Capillary Electrophoresis with Laser-Induced Fluorescence Detection

Not Accessible

Your library or personal account may give you access

Abstract

The noncovalent binding of the near-infrared (NIR) dyes, DTTCI (cationic) and IR-125 (anionic), to several model proteins was investigated with the use of steady-state and picosecond laser fluorescence measurements. In an aqueous borate buffer (pH = 9.2), minimal fluorescence emission from these NIR dyes was observed. When a protein was added to the solution, enhancements in the fluorescence emission were found for both dyes. Time-resolved fluorescence measurements for IR-125 in the presence of the protein, β-casein, indicated a biexponential decay with lifetimes of 195 and 682 ps (X<sup>2</sup> = 1.94). Our data suggest that these dyes distribute themselves between the hydrophobic core of the protein and the interstitial aqueous solution. The dye molecules residing in the interior of the protein exhibit enhancements in their fluorescence due to a more favorable microenvironment. The binding and enhanced fluorescence properties allowed the use of these dyes as noncovalent stains for the low-level detection of proteins separated via capillary electrophoresis (CE). Detection limits for some model proteins separated by CE and stained with these NIR dyes were found to be superior to those obtained by using UV detection in CE.

PDF Article
More Like This
Terahertz-capillary electrophoresis (THz-CE) for direct detection of separated substances in solutions

Keiko Kitagishi, Takayuki Kawai, Masayoshi Tonouchi, and Kazunori Serita
Opt. Mater. Express 14(2) 472-482 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.