Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 7,
  • pp. 900-905
  • (1996)

In Situ Near-IR Cure Monitoring of a Model Epoxy Matrix Composite

Not Accessible

Your library or personal account may give you access

Abstract

To improve the performance of composites it is imperative that the interphase region between the inorganic reinforcement and the polymer matrix be more completely understood. It is in this region that the stress transfer between the matrix and the reinforcement occurs. To this end, the curing of epoxy adjacent to an embedded silica optical fiber has been monitored <i>in situ</i> by evanescent wave spectroscopy. The epoxy studied is partially fluorinated and has a lower refractive index than the silica optical fiber. This combination of epoxy/silica served as a model composite system. The lower refractive index of the partially fluorinated epoxy allowed the silica optical fiber to be used as a waveguide for the internal reflection of near-infrared light. The epoxy curing was determined as a function of time and temperature by analysis of the near-infrared spectrum from the epoxy adjacent to the fiber obtained by the interaction of the evanescent wave that occurs at each internal reflection with the low-refractive-index epoxy. The results obtained from the examination of the near-infrared spectrum, particularly the disappearance of the NH<sub>2</sub> stretching/bending combination band at ∼4925 cm<sup>-1</sup> and the concomitant increase of the C-N overtone band at ∼4725 cm<sup>-1</sup>, showed that epoxy ring-opening and cross-linking reactions could be followed in real time. Finally, treatment of the fiber with a silane coupling agent had no observable effect on the curing reaction of the epoxy.

PDF Article
More Like This
Contactless optoelectronic technique for monitoring epoxy cure

Andrea Cusano, Vincenzo Buonocore, Giovanni Breglio, Antonio Calabrò, Michele Giordano, Antonello Cutolo, and Luigi Nicolais
Appl. Opt. 39(7) 1130-1135 (2000)

Fiber-optic epoxy composite cure sensor. II. Performance characteristics

Kai-Yuen Lam and Martin A. Afromowitz
Appl. Opt. 34(25) 5639-5644 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.