The acousto-optic tunable filter (AOTF) is a digitally accessible, compact, solid-state spectrometer that is well suited to high-frequency optical switching and wavelength selection. With injection of a combination of radio-frequency signals into its transducer, the AOTF acts as an electronically controllable, multiplexing spectrometer. The multiplexing AOTF in this study is employed in two distinct fashions. The first of these utilizes the multiplexing AOTF as a matched filter whose intended spectral profile (i.e., bandpass and band symmetry) is controlled almost at will, providing unprecedented flexibility and high throughput. Second, the multiplexing AOTF is employed for the first time as a Hadamard transform spectrometer. In operation, the integrated intensity on the detector measures combinations of the diffracted wavelengths. The light encodement is performed without the use of physical masks and is governed by HT mathematics, which allow efficient recovery of the optical spectrum. Appreciable signal-to-noise enhancement is demonstrated with the HT AOTF spectrometer.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription