Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 12,
  • pp. 1483-1499
  • (1996)

Effect of Sampling Geometry on Elemental Emissions in Laser-Induced Breakdown Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

In laser-induced breakdown spectroscopy (LIBS), a focused laser pulse is used to ablate material from a surface and form a laser plasma that excites the vaporized material. Geometric factors, such as the distance between the sample and the focusing lens and the method of collecting the plasma light, can greatly influence the analytical results. To obtain the best quantitative results, one must consider this geometry. Here we report the results of an investigation of the effect of sampling geometry on LIBS measurements. Diagnostics include time-resolved spectroscopy and temporally and spectrally resolved imaging using an acousto-optic tunable filter (AOTF). Parameters investigated include the type of lens (cylindrical or spherical) used to focus the laser pulse onto the sample, the focal length of the lens (75 or 150 mm), the lens-to-sample distance (LTSD), the angle-of-incidence of the laser pulse onto the sample, and the method used to collect the plasma light (lens or fiber-optic bundle). From these studies, it was found that atomic emission intensities, plasma temperature, and mass of ablated material depend strongly on the LTSD for both types of lenses. For laser pulse energies above the breakdown threshold for air, these quantities exhibit symmetric behavior about an LTSD approximately equal to the back focal length for cylindrical lenses and asymmetric behavior for spherical lenses. For pulse energies below the air breakdown threshold, results obtained for both lenses display symmetric behavior. Detection limits and measurement precision for the elements Be, Cr, Cu, Mn, Pb, and Sr, determined with the use of 14 certified reference soils and stream sediments, were found to be independent of the lens used. Time-resolved images of the laser plasma show that at times >5 μs after plasma formation a cloud of emitting atoms extends significantly beyond the centrally located, visibly white, intense plasma core present at early times (<0.3 μs). It was determined that, by collecting light from the edges of the emitting cloud, one can record spectra using an ungated detector (no time resolution) that resemble closely the spectra obtained from a gated detector providing time-resolved detection. This result has implications in the development of less expensive LIBS detection systems.

PDF Article
More Like This
Effects of sample temperature in femtosecond single-pulse laser-induced breakdown spectroscopy

Jon Scaffidi, William Pearman, J. Chance Carter, Bill W. Colston, and S. Michael Angel
Appl. Opt. 43(13) 2786-2791 (2004)

Elemental analysis of slurry samples with laser induced breakdown spectroscopy

Kemal E. Eseller, Markandey M. Tripathi, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 49(13) C21-C26 (2010)

Salinity effects on elemental analysis in bulk water by laser-induced breakdown spectroscopy

Nan Li, Jinjia Guo, Chao Zhang, Yongquan Zhang, Qingyang Li, Ye Tian, and Ronger Zheng
Appl. Opt. 58(14) 3886-3891 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.