In diffuse reflectance spectroscopy the Kubelka-Munk equations have been used extensively. These equations provide simple solutions to the inverse problem of obtaining information on the scattering and absorption cross sections from reflected light. Proof is provided that the basic Kubelka-Munk equation (d<i>r</i>(<i>x</i>)/<i>s</i>d<i>x</i>) = <i>r</i><sup>2</sup>(<i>x</i>) - 2<i>ar</i>(<i>x</i>) + 1 should be replaced by the equation (d<i>r</i>(<i>x</i>)/<i>s</i>d<i>x</i>) = <i>r</i><sup>2</sup>(<i>x</i>) - 2(2<i>a</i> - 1)<i>r</i>(<i>x</i>) + 1 and that the Kubelka-Munk function (<i>k</i>/<i>s</i>) = ((1 - <i>R</i><sub>∞</sub>)<sup>2</sup>/2<i>R</i><sub>∞</sub>) should be replaced by the function (<i>k</i>/<i>s</i>) = ((1 - <i>R</i><sub>∞</sub>)<sup>2</sup>/4<i>R</i><sub>∞</sub>). Here <i>r</i>(<i>x</i>) is the reflectance; <i>s</i> is the scattering cross section (cm<sup>-1</sup>); <i>a</i> = (<i>k</i> + <i>s</i>)/<i>s</i>, where <i>k</i> is the absorption cross section (cm<sup>-1</sup>); and <i>R</i><sub>∞</sub> is the reflection coefficient of an infinitely thick sample. We note, however, that because of a redefinition of <i>a</i> carried out by Kubelka and Munk in the process of their calculations, the scattering cross section <i>s</i> calculated from their expression <i>sd</i> = 1/(1/2(1/<i>R</i><sub>∞</sub> - <i>R</i><sub>∞</sub>))(coth<sup>-1</sup>((1/2(1/<i>R</i><sub>∞</sub> + <i>R</i><sub>∞</sub>) - <i>r</i>(<i>d</i>))/(1/2(1/<i>R</i><sub>∞</sub> - <i>R</i><sub>∞</sub>))) - coth<sup>-1</sup>((1/2(1/<i>R</i><sub>∞</sub> + <i>R</i><sub>∞</sub>))/(1/2(1/<i>R</i><sub>∞</sub> - <i>R</i><sub>∞</sub>)))) is correct. But the Kubelka-Munk theory still overestimates <i>k</i> by a factor of two.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription