Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 7,
  • pp. 917-926
  • (1995)

Ion Kinetic Energy Determinations in Radio-Frequency Glow Discharge Mass Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

Radio-frequency glow discharge (rf-GD) sources produce an abundance of both atoms and ions. For the mass spectrometric application of the glow discharge technique, knowledge of the ion kinetic energies is required to optimize extraction and focusing of ions from the source region into the analyzer. This paper details kinetic energies experimentally determined with the use of the "retarding potential" method. For this study, the analyzer quadrupole of a double-quadrupole mass spectrometer was positively biased to act as a repeller. Ion kinetic energies (IKEs) determined for a variety of discharge and analyzer operating conditions ranged from 12.5 eV to 25.0 eV for <sup>63</sup>Cu<sup>+</sup>. Kinetic energy measurements were confirmed from ion trajectory simulations and follow closely the experimental values for identical analyzer conditions and initial IKEs. Results of this study indicate that the conditions under which ions are formed (plasma conditions) affect IKEs and energy spreads to a greater extent than analyzer parameter variations. Different from atmospheric plasma sources, IKEs for rf-GD species do not vary as a function of ion mass/identity. Evidence is also given in support of a slight mass biasing owing to the transmission properties of double-quadrupole analyzers. The findings detailed herein demonstrate the effects of rf modulation on both ion kinetic energy values and distributions.

PDF Article
More Like This
Glow Discharge Resonance

A. B. Stewart
J. Opt. Soc. Am. 45(8) 651-657 (1955)

Abnormal glow discharge detection of visible radiation

N. S. Kopeika, J. Rosenbaum, and R. Kastner
Appl. Opt. 15(6) 1610-1615 (1976)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.