Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 7,
  • pp. 1054-1062
  • (1995)

Temperature and Emission Spatial Profiles of Laser-Induced Plasmas during Ablation Using Time-Integrated Emission Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Emission spectra and excitation temperature spatial profiles, within laser-induced plasmas from solid copper targets, are characterized as a function of laser power density with the use of time-integrated emission spectroscopy. This research shows how the measured axial spatial emission intensity of the expanding plasma can be influenced by the time integration. The excitation temperatures calculated from these integrated emission-line intensities may not coincide with the actual temperature spatial profile. Transient plasma dynamics during time-integrated intensity measurements can influence both the excitation temperature and the atomic number density of the emitting species. As a demonstration of the influence of fluid dynamics on time-integrated emission measurements, a shock-wave model was used as an example to show how the spatial emission intensity profile of a laser-induced plasma can be affected by transient expansion. Even for time-resolved emission measurements, the high velocity of a laser-induced plasma can influence spatial intensity data close to the target surface. The ability to accurately measure spatial emission intensity and temperature behavior is shown to be related to the integration time vs. plasma expansion velocity.

PDF Article
More Like This
Spectral analysis of the acoustic emission of laser-produced plasmas

Santiago Palanco and Javier Laserna
Appl. Opt. 42(30) 6078-6084 (2003)

Imaging and emission spectroscopy of the submicrosecond plasma generated from copper substrate with nanosecond laser pulses

Mateusz Tanski, Robert Barbucha, Jerzy Mizeraczyk, and Szymon Tofil
Appl. Opt. 59(27) 8388-8394 (2020)

Plasma evolution during metal ablation with ultrashort laser pulses

J. König, S. Nolte, and A. Tünnermann
Opt. Express 13(26) 10597-10607 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved