Abstract

The recently developed photothermal technique of quadrature photopyroelectric spectroscopy (Q-PPES) has been applied to measurements of amorphous Si thin films deposited on crystalline Si substrates. Direct, meaningful comparisons have been made between purely optical transmission in-phase (IP-PPES) spectra, and purely thermal-wave sub-gap spectra with the use of a novel noncontacting PPES instrument to record lock-in in-phase and quadrature spectra, respectively. FT-IR transmission spectra have also been obtained for a comparison with this IP-PPES optical method. The results of the present work showed that the FT-IR method performs the worst in terms of spectral resolution of thin films and sub-bandgap defect/impurity absorptions inherent in the Si wafer substrate. The optical IP-PPES channel, however, albeit more sensitive than the FT-IR technique, fails to resolve spectra from surface films thinner than 2100 Å, but is sensitive to sub-bandgap absorptions. The thermal-wave Q-PPES channel is capable of resolving thin-film spectra well below 500 Å thick and exhibits strong signal levels from the crystalline Si sub-bandgap absorptions. Depending on the surface thin-film orientation toward, or away from, the direction of the incident radiation, the estimated minimum mean film thickness resolvable spectroscopically by Q-PPES is either 40 Å or 100 Å, respectively.

PDF Article

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.