Fluorescence emission spectra and absolute quantum yields have been measured for ten diverse crude oils at various concentrations over a broad range of excitation and emission wavelengths in the visible and the near-infrared. Energy transfer produces large red shifts and large widths in the fluorescence emission spectra for shorter wavelength excitation particularly for heavier crude oils. However, the effects of energy transfer are nearly absent for near-infrared excitation; all crude oils exhibit nearly the same emission spectra for long wavelength excitation. In addition, the fraction of emission resulting from collisional energy transfer relative to nascent emission is almost independent of oil type; it is governed by quantum yield characteristics. Absolute fluorescence quantum yields of ten crude oils (and three rhodamine dyes for validation) were measured with respect to scattering of latex microspheres in distilled water. Fluorescence quantum yields vary systematically with crude oil type as well as excitation wavelength; quantum yields are lower for high fluorophore concentrations (heavy crude oils) and for longer wave-length excitation. Stern-Volmer analyses of the quantum yields indicate that simple models apply and show the relative quenching rates for different excitation wavelengths.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription