Laser-induced breakdown spectroscopy has been applied to perform elemental analysis of aluminum alloy targets. The plasma is generated by focusing a pulsed Nd:YAG laser on the target in air at atmospheric pressure. Such a plasma was characterized in terms of its appearance, emission spectrum, space-integrated excitation temperature, and electron density. The electron density is inferred from the Stark broadening of the profiles of ionized aluminum lines. The temperature is obtained by using Boltzmann plots of the neutral iron lines. Calibration curves for magnesium, manganese, copper, and silicon were produced. The detection limits are element-dependent but are on the order of 10 ppm.

PDF Article

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.