Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 3,
  • pp. 361-366
  • (1995)

Application of FT-IR Step-Scan Photoacoustic Phase Modulation Methods to Keratin Fibers

Not Accessible

Your library or personal account may give you access

Abstract

Step-scan FT-IR/PAS is shown to be a powerful tool for the nondestructive analysis of keratin fibers. Depth profiling studies were performed either by varying the optical velocity of the interferometer (scanning FT-IR/PAS depth profiling) or by a phase modulation method, utilizing a lock-in amplifier to separate the surface and bulk components of the signal phase. Both methods were shown to be capable of distinguishing spectroscopically between the cuticle and cortex of wool and hair fibers, the different spectral features being consistent with the differences in protein composition between these components. Phase-modulated spectra exhibited improved signal-to-noise ratios, with relatively little interference from saturation effects, compared with scanning FT-IR/PAS depth profile spectra.

PDF Article
More Like This
Quantitative Fourier transform IR photoacoustic spectroscopy of condensed phases

Y. C. Teng and B. S. H. Royce
Appl. Opt. 21(1) 77-80 (1982)

Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy

Markus Brandstetter, Andreas Genner, Clemens Schwarzer, Elvis Mujagic, Gottfried Strasser, and Bernhard Lendl
Opt. Express 22(3) 2656-2664 (2014)

Non-invasive assessment of hair regeneration in androgenetic alopecia mice in vivo using two-photon and second harmonic generation imaging

Gaiying He, Menghua Liu, Fenglong Wang, Shuqing Sun, Yu Cao, Yanan Sun, Shuhua Ma, and Yi Wang
Biomed. Opt. Express 14(11) 5870-5885 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved