Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 10,
  • pp. 1478-1484
  • (1995)

Use of Normalized Relative Line Intensities for Qualitative and Semi-Quantitative Analysis in Inductively Coupled Plasma Atomic Emission Spectrometry Using a Custom Segmented-Array Charge-Coupled Device Detector. Part I: Principle and Feasibility

Not Accessible

Your library or personal account may give you access

Abstract

A procedure is described to conduct qualitative analysis in inductively coupled plasma atomic emission spectrometry even in the presence of spectral interferences. This procedure is based on the use of both line correlation and normalized relative line intensities of given elements. When spectral interferences due to a major element are observed for an analyte, use of multiple linear regression of the normalized relative line intensities of both the analyte and the major element provides information about the certainty of the presence of the analyte and the relative concentration between the major element and the analyte. Direct peaking and automatic background correction are required for this procedure. In this instance, no information is necessary about the shape of the line profile. This procedure has been tested with an echelle grating-based dispersive system equipped with a custom segmented-array charge-coupled device detector.

PDF Article
More Like This
Quantitative analysis of Fuller’s earth using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

I. Rehan, M. Z. Khan, K. Rehan, S. Sultana, M. U. Rehman, R. Muhammad, M. Ikram, and H. Anwar
Appl. Opt. 58(16) 4227-4233 (2019)

Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

Michaela Galiová, Jozef Kaiser, Francisco J. Fortes, Karel Novotný, Radomír Malina, Lubomír Prokeš, Aleš Hrdlička, Tomáš Vaculovič, Miriam Nývltová Fišáková, Jiří Svoboda, Viktor Kanický, and Javier J. Laserna
Appl. Opt. 49(13) C191-C199 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.