This paper presents Raman and Brillouin scattering measurements obtained with a Fourier transform interferometer, in which the laser light rejection was provided by an alkali-metal vapor cell. The narrow absorption band of the vapor cell allowed for the detection of energy shifts as low as 0.85 cm<sup>-1</sup>(~26 GHz) while completely blocking scattered light at the laser frequency. Since, unlike a Fabry-Perot interferometer, a Fourier transform interferometer does not have a free spectral range placing an upper bound on the energy shifts which it can detect without ambiguity, the energy regimes of both Brillouin and Raman scattering are for the first time accessible with a single instrument.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription