Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 48,
  • Issue 10,
  • pp. 1218-1223
  • (1994)

New Design for Fourier Transform Infrared Vibrational Circular Dichroism Spectrometers

Not Accessible

Your library or personal account may give you access

Abstract

Fourier transform infrared (FT-IR) spectrometers are commonly designed with small-area detectors and tight focusing mirrors. Vibrational circular dichroism (VCD) measurements made with such FT-IR instruments contain polarization artifacts, and VCD measurements on both enantiomers (or one enantiomer and racemic mixture) are required in order to reduce these artifacts. This restriction limits the VCD measurements to only those samples for which both enantiomers (or one enantiomer and racemic mixture) are available. Recently a modified design was reported in the literature where the mirrors between sample and detector were replaced with a BaF<sub>2</sub> lens, and a larger-area detector was substituted for the smaller-area counterpart. These modifications successfully alleviated some of the artifact problems. This design, however, is not suitable for polarizing interferometers, where polarizations exiting the interferometer are to be preserved to a high degree of purity. In addition, it is not clear whether the throughput enhancement advantage realized with a larger-area detector completely offsets the disadvantage from increased noise with detector area. Furthermore, BaF<sub>2</sub> lenses reduce the broad range routinely available on an FT-IR instrument. Here we report a new design that replaces all the mirrors at the exit port of the interferometer with two KBr lenses and retains the full spectral range (4000-400 cm<sup>-1</sup>) of mid-infrared FT-IR spectrometers. VCD measurements obtained with small- (1 × 1 mm) and large- (4 × 4 mm) area detectors are found to have similar signal quality.

PDF Article
More Like This
A picosecond time-resolved vibrational circular dichroism spectrometer

Mathias Bonmarin and Jan Helbing
Opt. Lett. 33(18) 2086-2088 (2008)

Circular Dichroism Spectroscopy with a Polarization Fourier Spectrometer

J. E. Stewart
Appl. Opt. 10(6) 1464-1465 (1971)

Design of an efficient broadband far-infrared fourier-transform spectrometer

Bruno Carli, Alessandra Barbis, John E. Harries, and Luca Palchetti
Appl. Opt. 38(18) 3945-3950 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.