Dynamic two-dimensional infrared (2D IR) correlation maps are a convenient means of examining the information contained in time-resolved IR spectra. Dynamic 2D IR spectra can be collected with the use of either dispersive or Fourier transform (FT) IR spectrometers. Use of a step-scanning FT-IR spectrometer has advantages over conventional rapid-scan FT-IR spectrometry when one is acquiring time-resolved IR data on time scales faster than about 0.1 s, because the spectral multiplexing is removed from the time domain. Dynamic IR spectra of atactic polystyrene (undergoing a small-amplitude oscillatory strain) collected on both dispersive and FT instrumentation are compared. Although the dispersive approach produces higher signal-to-noise ratios over small spectral regions, the multiplex advantage makes the FT approach attractive when broader spectral coverages are required. The first vibrational circular dichroism (VCD) spectrum [of(–)-α-pinene] collected on a step-scanning interferometer is also presented.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription