Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 47,
  • Issue 12,
  • pp. 2145-2150
  • (1993)

Effect of Cultural Conditions on Deep UV Resonance Raman Spectra of Bacteria

Not Accessible

Your library or personal account may give you access

Abstract

Bacteria grown on trypticase soy agar (TSA), trypticase soy broth (TSB), and Davis minimal media, and harvested at times ranging from 4.5 to 48 h have been excited at 242.54 and 222.65 nm for the purpose of generating resonance Raman spectra. When excitation with 242.54-nm light occurs, simple spectra of tyrosine and tryptophan and various nucleic acids are observed. Large changes in the relative intensities of major nucleic acid peaks at 1485 and 1575 cm<sup>−1</sup>, on the one hand, as compared to a prominent protein tyrosine + tryptophan peak at 1616 cm<sup>−1</sup>, on the other, have been attributed to very large variations in the RNA content of bacterial cells from culture to culture. The spectral changes are observed whenever differences in growth rates or variations in cultural media result in substantial changes in the amount of ribosomal RNA. In spite of very large cultural effects on peak intensities it has been possible to obtain bacterial G+C/A+T ratios from these spectra. Specifically, the ratio of the intensity of the C (1530 cm<sup>−1</sup>) peak to the intensity of the A+G peak (1485 cm<sup>−1</sup>) when plotted against the known molar percent G+C of the corresponding bacterial DNA produces a straight line. Plots have been shown to be very nearly growth-time and media independent for fourteen different types of bacteria, which range in DNA G+C content from 32 to 66%. Spectra obtained with 222.65-nm light, in contrast with spectra obtained with 242.54-nm excitation, have been found to be nearly growth-rate and media independent. The excitation wavelength, 222.65 nm, appears to be the best yet found for use in rapid Raman identification of bacteria. All strong peaks which have been assigned have been attributed to protein modes. Relative intensities of 1556-cm<sup>−1</sup> tryptophan and 1616-cm<sup>−1</sup> tryptophan + tyrosine bands have been found to be strongly correlated with bacterial Gram type and nearly independent of cultural media or stage of growth.

PDF Article
More Like This
Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria

Steven C. Hill, Yong-Le Pan, Chatt Williamson, Joshua L. Santarpia, and Hanna H. Hill
Opt. Express 21(19) 22285-22313 (2013)

Deep UV resonant Raman spectroscopy for photodamage characterization in cells

Yasuaki Kumamoto, Atsushi Taguchi, Nicholas Isaac Smith, and Satoshi Kawata
Biomed. Opt. Express 2(4) 927-936 (2011)

Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation

Alexandra Alimova, Alvin Katz, Howard E. Savage, Mahendra Shah, Glenn Minko, Daniel V. Will, Richard B. Rosen, Steven A. McCormick, and Robert R. Alfano
Appl. Opt. 42(19) 4080-4087 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.