Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 46,
  • Issue 4,
  • pp. 581-586
  • (1992)

Effect of Different Atmospheres on the Excitation Process of TEA-CO2 Laser-Induced Shock Wave Plasma

Not Accessible

Your library or personal account may give you access

Abstract

The plasma characteristics and excitation process of laser-induced plasma with the use of a TEA CO<sub>2</sub> laser of 750 mJ pulse energy and 100 ns pulse width are studied in different surrounding gases at reduced pressures. From the time-resolved spatial distribution, it is clear that in helium and argon atmospheres, two different excitation processes take place in forming the plasma. The first excitation process is due to the blast wave, while the second process is due to the metastable state of the noble gases. It is believed that this second process transfers metastable energy to the vaporized atoms of the target for emission, even long after the laser bombardment ends, thus giving total emission intensity that is higher in the noble gases than in air. The displacement of the front of the emission line under different atmospheres is also presented.

PDF Article
More Like This
Shock Wave Generation in Air and in Water by CO2 TEA Laser Radiation

C. E. Bell and B. S. Maccabee
Appl. Opt. 13(3) 605-609 (1974)

Comparative study of Nd:YAG laser-induced breakdown spectroscopy and transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy on chromated copper arsenate preservative-treated wood

Ali Khumaeni, Zener Sukra Lie, Hideaki Niki, Yong Inn Lee, Kazuyoshi Kurihara, Motoomi Wakasugi, Touru Takahashi, and Kiichiro Kagawa
Appl. Opt. 51(7) B121-B129 (2012)

Influence of surface roughness on nanosecond laser-induced shock wave enhancement effects

Lei Chen, Chuan Guo, Zelin Liu, Hao Liu, Minsun Chen, Zhongjie Xu, Guomin Zhao, and Kai Han
Appl. Opt. 61(29) 8859-8863 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.